MARS PATHFINDER

SURFACE OPERATIONS ~3 MONTHS

3 Science Instruments - IMP, APXS, ASI/MET Rover - 3 Imagers ~10 Technology Experiments

RETURNED ~2.5 Gbits DATA

>16,000 IMP Images

>550 Rover Images

16 Chemical Analyses Rocks and Soil; 9 Rocks

8.5 Million P, T, Wind Measurements

ROVER

Circumnavigated Lander, Traversed ~100 m Explored ~200 Square Meters of Surface 234 Commanded Movements, 24 Soil Mechanics Experiments

CAPTURED IMAGINATION OF PUBLIC

Front Page Headlines for a Week
566 Mhits First 30 Days; 47 Mhits on July 8th
Largest Internet Event in History

Landed Safely
bounced
15-20 fine
Rockiest part
Mars
Demo-rocks
inexpension
landing system
landing system
quicks

TOP 6 SCIENCE RESULTS

HIGH SILICA ROCKS

Differentiated Parent Materials

ROUNDED PEBBLES, COBBLES AND POSSIBLE CONGLOMERATE

Suggest Fluvial Processes Over Long Time Sand
Liquid Water in Equilibrium w/Atmosphere Warmer/Wetter Past

MOMENT OF INERTIA 0.36\$ ±0.00\$

Metallic Core >1300 km Radius <~2000 km Radius

AIRBORNE DUST MAGNETIC

Composite Particles, Magnetic Mineral, Likely Maghemite Freeze Dried Precipitate (Stain of Cement)
Iron Leached from Crust by Active Hydrologic Cycle

LANDING SITE AS PREDICTED FROM REMOTE SENSING AND ANALOG

Rocky Plain Safe for Landing and Roving Variety of Rocks Deposited by Flood, Relatively Dust Free

ATMOSPHERE

Water Ice Clouds; Dust Devils
Abrupt T Fluctuations with Time and Height in Morning

SCIENCE INVESTIGATIONS & OPS GROUPS

GEOLOGY AND GEOMORPHOLOGY

Depositional Plain

Lander and Rover Imaging

Ventifacts, Sand Dunes

Aerodynamic Roughness - Wind Socks Exhumed Surface

MINERALOGY AND GEOCHEMISTRY

Soil - Chamically Similar APXS, IMP Spectra and Rover Close Up Imaging Rocks - Andeites, dut

MAGNETIC PROPERTIES

Comparite Particles

Multispectral Imaging, [APXS of dust and ramp magnets]

SURFACE MATERIALS PROPERTIES

Compressional Drift - Edian

Imaging-rover tracks, Wheel Torques, Soil Mechanics

ATMOSPHERIC SCIENCE

Upper Atmosphere cold

Entry and Descent Data - Atmospheric Profile Liney - dusty, wave

Surface Meteorology - ASI/MET Data

Barrenetric Min - Sal 20, Sanidim.

Dust Bavils - P1; Imaged

ATMOSPHERIC IMAGING

Atmospheric Aerosols - Dust, Clouds, H2O vapor

ROTATIONAL & ORBITAL DYNAMICS

Telecommunications System Location, Ale. Accession, Monart of Inertia

control Metallic come 1300-2000 km Rading

Early What & Warre

MARS Pathfinder (Exploded View)

PARACHUTE DEPLOYMENT (6-11 km, 360-450 m/s) Landing - 2 min

HEATSHIELD SEPARATION (5-9 km, 95-130 m/s) Landing - 100 s

LANDER SEPARATION / BRIDLE DEPLOYMENT (3-7 km, 65-85 m/s) Landing - 80 s

AIRBAG INFLATION (300 m, \$2-64 m/m) Landing - 3 s

GANDLE GUT (9-39 m, 9-24 mvs) Landing -2 s

12.22

PETAL LATON FIRMS Landing + 15 min

AMBAG RETRACTION / LANDER RIGHTING FINAL RETRACTION Landing + 180 min

Landing + 115 min

Super Resolution Image of "Big Crater" by Dr. Timothy Parker, JPL

Super Resolution of Big Crater - Medium Resolution 850 KB

Super Resolution of Big Crater - Full Resolution 2440 KB

For Location of Big Crater See Map Below

PIA01124_29418.jpg

Mars Pathfinder Landing Site Catalog #: PIA01124

Mosaic of Viking orbiter images illustrating the location of the lander (19.17 degrees N, 33.21 degrees W in the USGS reference frame) with respect to surface features. Five prominent features on the horizon include North Knob, Southeast Knob, Far Knob, Twin Peaks, and Big Crater. Two small craters visible in the orbiter and lander views—Little Crater and Rimshot Crater—lie on the northwest outer flank of the rim of Big Crater. Because the lander is on the southeast-facing flank of a low ridge, very distant features to the south and east are in view, whereas relatively nearby features to the north are partially or completely obscured. Only the tip of North Knob, which appears larger in the Viking orbiter images than the Twin Peaks, projects above the local horizon, and a 300-m crater, 1.2 km to the northeast, is completely obscured. Viking stereo images 004A27 and 004A87 and 004A44 and 004A70. North is up; scale bar, 5 km. (Insets) (Upper right) Lander location. (Upper left) North Knob from lander. (Lower left) Far Knob from lander. (Lower right) Southeast Knob from lander. The location of the lander in inertial

http://mars.jpl.nasa.gov/MPF/ops/BarnacleBill.jpg

Page: 1

Page: 1

Diversity in Rover Deployment Area

Sol 10

Sol 38

Sol 66

lower magnet

upper magnet

Temperature profile from Pathfinder Atmospheric Structure Instrument

MEASURED SURFACE PRESSURE

Boundary Layer Sequence Temperatures Sol 2 13:49 thru 14:03 LST

http://mars.jpl.nasa.gov/MPF/ops/dustdevil.gif

http://mars.jpl.nasa.gov/MPF/ops/earth_here.gif